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Abstract
Modeling club structures as bipartite networks, we formulate the problem of

club formation as a game of network formation and identify those club networks
that are stable if agents behave farsightedly in choosing their club memberships.
Using the farsighted core as our stability notion, we show that if agents’ payoffs
are single-peaked and agents agree on the peak club size (i.e., agents agree on the
optimal club size) and if there sufficiently many clubs to allow for the partition
of agents into clubs of optimal size, then a necessary and sufficient condition for
the farsighted core to be nonempty is that agents who end up in smaller-than-
optimal size clubs have no incentive to switch their memberships to already
existing clubs of optimal size. In contrast, we show via an example that if there
are too few clubs relative to the number of agents, then the farsighted core may
be empty. Contrary to prior results in the literature involving myopic behavior,
our example shows that overcrowding and farsightedness lead to instability in
club formation.

1 Introduction

The study of club formation has a long history in economics going back to Buchanan
(1965). Here we offer a new approach to the study of clubs. In particular, modeling
club structures as bipartite networks, we formulate the problem of club formation as
a game of network formation and identify those club networks that are stable if agents
behave farsightedly in choosing their club memberships. Thus we bring together two
strands of the literature: club theory1 and the theory of social and economic networks
initiated by Kirman (1983).

∗Also, Department of Economics, University of Warwick, Coventry CV4 7AL, UK.
†This paper was completed while Page and Wooders were visiting CERMSEM at the Univer-

sity of Paris 1 in June-July, 2005. The authors thank CERMSEM and Paris 1 for their hospitality.
URLs: http://www.cba.ua.edu/~fpage/, http://www.myrnawooders.com. KEYWORDS: clubs, net-
work formation games, farsighted core, Nash club equilibria. JEL Classification Numbers: A14, D20,
J00

1See Demange and Wooders (2005), Part II for surveys of club theory from several perspectives.

1



Unlike the random graph theoretic approach taken by Kirman (1983), here we
follow an approach similar to that taken by Jackson and Wolinsky (1996) in their
study of networks and focus exclusively on strategic considerations in club network
formation. The basic setup of our model is closely related to the model of Konishi,
Le Breton and Weber (1997). They examine, however, free mobility equilibrium
of a local public goods economy (an assignment of players to clubs, locations, or
jurisdictions that partitions the population and has the property that no individual
can gain by either moving to any other existing club, or creating his own club). The
partition derived from the players’ strategy choices is thus stable against unilateral
deviations by individuals.2

In contrast to the prior literature on clubs, we allow strategic coalitional moves
and permit agents to be farsighted.3 Using the farsighted core introduced in Page
and Wooders (2004) as our stability notion, we show that if agents’ payoffs are single-
peaked and agents agree on the club size at which payoffs peak (i.e., agents agree
on the optimal club size) and if there are sufficiently many clubs (i.e., sufficiently
many club types or club locations) to allow for the partition of agents into clubs
of optimal size, then a necessary and sufficient condition for the farsighted core to
be nonempty is that agents who end up in smaller-than-optimal size clubs (i.e., the
left-over agents) have no incentive to switch their memberships to already existing
clubs of optimal size.4 We note that in this case, the outcome of farsighted behavior
corresponds to outcomes of myopic behavior as in Arnold and Wooders (2005) and
the set of outcomes in the farsighted core correspond to the ‘Nash club equilibrium
outcomes’.

The coincidence of outcomes of farsighted behavior and myopic behavior does
not extend to all cases, however. We demonstrate via an example that if there are
too few clubs relative to the number of agents so that on average clubs must be
larger than optimal size, then the farsighted core may be empty. This emptiness
problem is caused by the fact that farsighted agents, unlike myopic agents, might
switch their club memberships to already overcrowded clubs, temporarily making
themselves worse off, if in the end switching induces an out migration that makes
them better off. We note that the Arnold and Wooders club formation model agents
behave myopically in choosing their club memberships and will switch memberships if
and only if switching makes them strictly better off next period. Thus, in their model,
since agents are assumed to be unwilling to make themselves temporarily worse off,
even if doing so induces payoff improving future out migrations, fewer membership
defections are possible. As a result, Arnold and Wooders are able to show that

2 In a similar set up, Conley and Konishi (2002) analyze migration proof equilibrium, which are
stable only against credible deviations on the part of a coalition. A coalitional deviation to another
jurisdiction is credible if no outsiders to the coalition will want to follow the deviators and, within
the deviating group, no player can gain by a further deviation. Conley and Konishi consider only
the case where the number of possible clubs is unconstraining.

3Our approach differs from the cooperative/price-taking approach in much of the literature on
clubs (again see Part II of Demange and Wooders) in that coalitions behave strategically.

4Stated loosely, a club network is contained in the farsighted core if no group of agents has an
incentive to alter their club memberships, taking into account club membership changes that might
take place in the future.
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even when there are too few clubs, a club structure in which all clubs are of nearly
equal size is immune to coalitional defections. Using their terminology, Arnold and
Wooders are able to show that if agents are myopic and if there is overcrowding, a
Nash club equilibrium always exists. In contrast, our analysis suggests that in general
overcrowding and farsightedness may lead to instability in club formation.

We shall proceed as follows. In Section 2, we introduce the notion of a club net-
work and state the assumptions of our model. In Section 3, we define the farsighted
dominance relation over the feasible set of club networks, and we define the farsighted
path dominance relation. In Section 4, we define the abstract club network forma-
tion game with respect to the farsighted path dominance relation and we define the
farsighted core of the club network formation game. Finally, in Section 4, we state
our main result giving necessary and sufficient conditions for nonemptiness of the
farsighted core for the case in which there are sufficiently many clubs.

2 Clubs Networks

We begin by introducing the notion of a club network. Using bipartite networks we
are able to represent in a very compact and precise way the totality of any given club
structure.

Let N be a finite set of agents consisting of two or more agents with typical
element denoted by i, and let C be a finite set of club types - or alternatively, a set
of club labels or club locations - with typical element denoted by c.

Definition 1 (Club Networks)
A club network g is a nonempty subset of N × C such that (i, c) ∈ g if and only

if agent i is a member of club c.

Given club network g,

g(c) := {i ∈ N : (i, c) ∈ g}

(i.e., the section of g at c) is the set of members of club c in network g ⊆ N × C,
while the set

g(i) := {c ∈ C : (i, c) ∈ g}

(i.e., the section of g at i) is the set of clubs to which agent i belongs in network
g ⊆ N × C.

Example 1 To illustrate, suppose there are five agents N = {i1, i2, i3, i4, i5} and two
clubs C = {c1, c2}. Further, suppose that c1 denotes the chess club while c2 denotes
the fencing club. Club network g0 depicted in Figure 1 represents one possible club
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structure given N and C.

i1

i2

i3

i4

i5

c1

c2

Figure 1: Club Network g0

In club network g0 the chess club has three members

g0(c1) = {i2, i3, i4} ,

while the fencing club has two members

g0(c2) = {i1, i5} .

Note that in club network g0 each agent is a member of one and only one club. Thus,
for example

g0(i5) = {c2} ,
that is, agent i5 is a member of the fencing club, but is not a member of the chess
club. Below we will formalize the single club membership property of this example in
an assumption that we will maintain throughout the paper.

The collection of all club networks given N and C is given by the collection of
all nonempty subsets of N × C, denoted by P (N × C). We shall denote by |g(c)|
the number of members of club c (i.e., the club size) in network g and by |g(i)| the
number of clubs to which i belongs in network g. In Example 1, the chess club has
three members, that is |g0(c1)| = 3, and agent i5 belongs to one club - the fencing
club - and thus |g0(i5)| = 1.

We shall maintain the following assumptions throughout:

A-1 (single club membership) The feasible set of club networks, K ⊂P (N × C), is
given by

K ⊆ {g ∈ P (N × C) : |g(i)| = 1 for all i ∈ N} .
Thus, in each feasible club network g ∈ K each agent is a member of one and
only one club. Again note that club network g0 in Example 1 satisfies the single
club membership assumption [A-1]. Also note that under assumption [A-1] the
collection {g(c) : c ∈ C} forms a partition of the set of agents.
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A-2 (identical payoff functions depending on club size) Agents have identical payoff
functions, u(·), and payoffs are a function of club size only. In Example 1, agent
i5 is a member of the fencing club, that is, g0(i5) = {c2}, and this club has a
membership set given by

g0(g0(i5)) := g
2
0(i5) = {i1, i5} .

Thus, in network g0 agent i5 has a payoff given by

u(|g0(g0(i5))|) = u( g20(i5) ) = u(|{i1, i5}|) = u(2).
In general, given any club network g, g2(i) denotes the total number of club
members in the club to which agent i belongs.

A-3 (single-peaked payoffs) There exists a club size s∗ with 1 ≤ s∗ < |N | such that
payoffs are increasing in club size up to club size s∗ and decreasing thereafter.

A-4 (free mobility) Each agent can move freely and unilaterally from one club to
another. This means that an agent can drop his membership in any given club
and join any other club without bargaining with or seeking the permission of any
agent or group of agents. In this sense our model of club formation as a game
over club networks is noncooperative. The assumption of free mobility is quite
common in models of noncooperative network formation (see, for example, Bala
and Goyal (2000)), as well as in the club literature (see, for example, Demange
(2005) and the references contained therein).

Example 2 It is important to note that our assumptions do not rule out the possi-
bility that some clubs have no members (i.e., are empty). Thus, in some feasible club
networks g ∈ K, it may be the case that g(c) = ∅ for some club type c ∈ C. If club c
has no members, then |g(c)| = |∅| = 0. Figure 2 depicts just such a situation.

i1

i2

i3

i4

i5

c1

c2

Figure 2: Club Network g1

In moving from club network g0 in Example 1 to club network g1 above, agents i1
and i5 have freely and unilaterally dropped their memberships in the fencing club and
joined the chess club. Thus, in club network g1 the fencing club c2 has no members.5

5While we assume that in moving from club network g0 to club network g1 agents i1 and i5 act
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3 Dominance Relations Over Club Networks

Under the assumption of free mobility agents can alter any existing club network by
simply switching their memberships. Such membership changes however can trigger
further membership changes by other agents which in the end leave some or all of
the agents who initially switched not better off and possibly worse off. Here we
will assume that agents make their membership decisions taking into account the
possibility of future membership changes by other agents - that is, we will assume
that agents are farsighted and are concerned with the long run consequences of their
immediate actions in choosing their club memberships. We begin by formalizing
a notion of farsighted dominance. Then, using this farsighted dominance relation
over club networks, we will identify club networks (i.e., club structures) that are
farsightedly stable.

3.1 Farsighted Dominance

Throughout let S denote a nonempty subset of N.

Definition 2 (Feasible Change and Improvement) Let g0 and g1 be two club networks
in K (g0 = g1).

(1) (Feasible Change) We say that agents i ∈ S can feasibly change club network
g0 to club network g1, denoted

g0 −→
S
g1,

if the move from network g0 to network g1 only involves a change in club memberships
by agents in S, leaving unchanged the memberships of agents outside group S, that
is, if

if g0(i) = g1(i) for all agents i ∈ N\S (i.e, i not contained in S).

(2) (Improvement) We say that club network g1 is an improvement over club
network g0 for agents i ∈ S, denoted

g1 S g0,

if u( g21(i) ) > u( g
2
0(i) ) for agents i ∈ S.

(3) (Feasible Improvement)We say that club network g1 is a feasible improvement
over club network g0 for agents i ∈ S, denoted

g1 S g0,

freely and unilaterally in switching their memberships, our model does not address the question of
how agents i1 and i5 come to simultaneously switch their memberships, whether by communication
and collusion or by serendipity. In order to formally address this question additional structure would
have to be added to the current model. Page, Wooders, and Kamat (2005) make a start on addressing
this question via the introduction of the supernetwork (i.e., a network of networks) in which the arcs
represent coalitional moves and coalitional preferences (see also Page and Wooders (2004)).
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if g0 −→
S
g1 and g1 S g0.

(4) (Farsightedly Feasible Improvement) We say that club network g∗ ∈ K is a
farsightedly feasible improvement over club network g ∈ K (or equivalently, we say
that club network g∗ farsightedly dominates club network g), denoted

g∗ g,

if there exists a finite sequence of club networks, g0, . . . , gn, with g := g0 and g∗ :=
gn, and a corresponding sequence of sets of agents, S1, . . . , Sn, such that for k =
1, 2, . . . , n,

gk−1 −→
Sk

gk and gn Sk gk−1.

Thus, club network g∗ is a farsighted feasible improvement over club network g if
(i) there is a finite sequence of feasible changes in club networks starting with network
g and ending with network g∗, and if (ii) payoffs

u(g2∗(i)) i∈N
in ending club network g∗ are such that for each k and for the agents in each coalition
Sk, payoffs in the ending club network g∗ are greater than the payoffs agents in Sk
would have received in club network gk−1 (i.e., in the club network that agents in Sk
changed) - that is, for each k

u(g2∗(i)) := u(g
2
n(i)) > u(g

2
k−1(i)) for i ∈ Sk.

The definition of farsighted feasible improvement above is a network rendition of
Chwe’s (1994) definition.

Example 3 Suppose that there are seven agents and two clubs and that the optimal
club size is three. Figure 3 depicts three feasible club networks, g0, g1, and g2. Club
network g2 farsightedly dominates club network g0.

i1

i2

i3

i4

i5

c1

c2

i6

i7

club network g0

i1

i2

i3

i4

i5

c1

c2

i6

i7

club network g1

i1

i3

i4

i5

c1

c2

i6

i7

i2

club network g2

Figure 3: Three Possible Club Structures
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To see this, consider the following sequence of moves. First, agents i6 and i7 switch
their memberships from club c2 to club c1. This feasible move by agents i6 and i7
changes club network g0 to club network g1 and is denoted by

g0 −→ g1.
{i6,i7}

Second, agents i1 and i2 switch their memberships from club c1 to club c2. This
feasible move by agents i1 and i2 changes club network g1 to club network g2 and is
denoted by

g1 −→ g2.
{i1,i2}

Given an optimal club size of 3 and given the assumption of single-peaked payoffs,
the initial moves by agents i6 and i7 makes them worse off.6 In particular, agents i6
and i7 start out in club c2 in network g0 with 4 members {i4, i5, i6, i7} and payoffs
given by

u( g20(i6) ) = u( g
2
0(i7) ) = u(|{i4, i5, i6, i7}|) = u(4),

and move to club c1 creating a new club network g1 in which club c1 has 5 members
{i1, i2, i3, i6, i7}. As a result, agents i6 and i7 are made worse off with payoffs given
by

u( g21(i6) ) = u( g
2
1(i7) ) = u(|{i1, i2, i3, i6, i7}|) = u(5).

However, due to the second round of moves by agents i1 and i2, agents i6 and i7 end
up in a smaller club c1 in club network g2, and thus end up better off. In particular,
in the second round of moves, agents i1 and i2 leave club c1 and move to club c2 -
changing club network g1 to club network g2. This move makes agents i1 and i2 better
off, but also makes agents i6 and i7 better off. In particular, agents i1 and i2 move
from club c1 in network g1 with 5 members {i1, i2, i3, i6, i7} and payoffs given by

u( g21(i1) ) = u( g
2
1(i2) ) = u(|{i1, i2, i3, i6, i7}|) = u(5),

to club c2 in network g2 with 4 members {i1, i2, i4, i5} and payoffs given by

u( g22(i1) ) = u( g
2
2(i2) ) = u(|{i1, i2, i4, i5}|) = u(4).

These second round moves by agents i1 and i2 leave agents i6 and i7 in a smaller club
c1 and thus make agents i6 and i7 better off. Thus, agents i6 and i7 who started out
in club c2 in network g0 with 4 members {i4, i5, i6, i7} and payoffs given by

u( g20(i6) ) = u( g
2
0(i7) ) = u(|{i4, i5, i6, i7}|) = u(4),

end up in club c1 in network g2 with 3 members, {i3, i6, i7} and payoffs given by

u( g22(i6) ) = u( g
2
2(i7) ) = u(|{i3, i6, i7}|) = u(3).

6Allowing coalitions to initially be made worse off but then eventually better off, as in this
example, differentiates farsighted dominance from other dominance relations.
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3.2 Path Dominance

We say that a sequence of club networks {gk}k in K forms a farsighted domination
path (i.e., a -path) if for any two consecutive networks gk−1 and gk,

gk farsightedly dominates gk−1,
that is,

if for any two consecutive networks gk−1 and gk,
gk−1 gk.

Using the terminology of graph theory, we can think of the farsighted dominance
relation gk−1 gk between club networks gk and gk−1 as defining a -arc from
network gk−1 to network gk. The length of -path {gk}k is defined to be the number
of -arcs in the path. We say that network g1 ∈ K is -reachable from network
g0 ∈ K if there exists a finite -path in K from g0 to g1.

We can use the notion of -reachability to define a new relation on the feasible
set of club networks K. In particular, for any two networks g0 and g1 in K define

g1 K g0 if and only if
g1 is -reachable from g0 through K , or
g1 = g0.

(1)

The relation K is a weak ordering on K. In particular, K is reflexive (g K g) and
K is transitive (g2 K g1 and g1 K g0 implies that g2 K g0). We shall refer to the

relation K as the farsighted domination path (FDP) relation.7

Note that if club network g1 is a feasible improvement over club network g0 for
agents i ∈ S, then g1 also dominates g0 with respect to the farsighted domination
path (FDP) relation, K. Thus,

if g1 S g0 for some coalition S, then g1 K g0.

This applies even if the S consists of a single agent, that is, even if S = {i} for some
agent i ∈ N . Thus,

if g1 {i} g0 for some agent i ∈ N , then g1 K g0.

Remark 1 If network g0 ∈ K is -reachable from network g0, then we say that K
contains a -circuit. Thus, a -circuit in K starting at club network g0 ∈ K is a
finite -path from g0 to g0. A -circuit of length 1 is called a -loop. Note that
because the relation is irreflexive (i.e., because it is not possible to have g g)

-loops are in fact ruled out. However, because the farsighted dominance relation,
, is not transitive, it is possible to have -circuits of length greater than 1.

7The relation K is sometimes referred to as the transitive closure in K of the farsighted dominance
relation, , on K.
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4 Club Formation Games and the Farsighted Core

A club formation game with farsighted agents is a pair (K, K), where K is the feasible
set of club networks and K is the farsighted domination path (FDP) relation on K.

One of the most fundamental stability notions in game theory is the core. Here
we define the notion of core for club formation games with respect to farsighted path
dominance. We call this notion of the core the farsighted core.

Definition 3 (The Farsighted Core)
Let (K, K) be a farsighted club formation game. A subset C of club networks in

K is said to be the farsighted core of (K, K) if for each club network g ∈ C there
does not exist a club network g ∈ K, g = g, such that g K g.

Note that any club network g contained in the farsighted core C is a Nash club
network - and in fact is a strong Nash club network.8 Letting NE denote the set of
Nash club networks in K and letting SNE denote the set of strong Nash club networks
in K, we can conclude from our definition of the farsighted core that

C ⊆ SNE ⊆ NE.

Example 3 is particularly interesting as it demonstrates that farsighted behavior
may generate quite different outcomes than myopic behavior and strong Nash equi-
libria (or Nash club equilibria). In Example 3, the number of clubs is not sufficiently
large to permit all players to be in clubs of optimal size (i.e., |C| < |N |

s∗ for |C| = 2,
|N | = 7, and s∗ = 3). As shown in Arnold and Wooders (2002), in this case, it is a
strong Nash equilibrium for the agents to be divided into clubs that are as close as
possible to the same size — in this example, into clubs of sizes 3 and 4. No group of
agents (nor any single agent) can improve upon his own payoff - but, nevertheless, the
farsighted core is empty. This is because, as the example illustrates, farsighted agents,
unlike myopic agents, will switch their club memberships to an already overcrowded
club, temporarily making themselves worse off, if in the end switching induces an out
migration that makes them better off.

When the number of clubs is unconstraining, the situation is quite different. Our
next results give necessary and sufficient conditions for the farsighted core of a club
formation game to be nonempty when there is an ample number of clubs, that is,
when the number of clubs is unconstraining.

Theorem 1 (Necessary and sufficient conditions for nonemptiness of the farsighted
core)

Consider a farsighted club formation game (K, K) with N agents, C clubs, and
optimal club size s∗, 1 ≤ s∗ < |N |. Suppose that assumptions (A-1)-(A-4) hold. In
addition, assume that

8A club network g ∈ K, is a Nash club network if there does not exist another club network g ∈ K
such that g {i} g for some agent i ∈ N .
A club network g ∈ K, is a strong Nash club network if there does not exist another club network

g ∈ K such that g S g for some coalition S.
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(a) |C| ≥ |N |
s∗ , and

(b) |N | = rs∗ + l for nonnegative integers r and l, l < s∗.

The following statements are true.

1. The farsighted core of (K, K) is nonempty if and only if u(l) ≥ u(s∗ + 1).
2. Club network g∗ is contained in the farsighted core if and only if g∗ has r clubs
of size s∗ and one club of size l.

Proof. Suppose that

|C| ≥ |N |
s∗

and u(l) ≥ u(s∗ + 1).

Consider a club network g∗ with r clubs of size s∗ and one club of size l (l < s∗). Let
I be the group of agents such that each agent i in I is a member of as s∗ club (i.e.,
a club of size s∗) and let E be the group of agents in the club of size l. Because

u( g2∗(i) ) ≥ u( g2(i) ) for all g ∈ K and all i ∈ I,

no coalition requiring the participation of agents from I will be able to initiate a
change in club network g∗ which leads to another club network making the partici-
pates from I better off. Moreover, because

u(l) ≥ u(s∗ + 1) and payoffs are single peaked,

no coalition of agents from E alone will be able to initiate a change in club network
g∗ which leads to another club network making the agents from E better off. Thus,
for any club network g∗ with r clubs of size s∗ and one club of size l, there does not
exist a club network g ∈ K, g = g∗, such that g K g∗. Therefore, if |C| ≥ |N |

s∗ and
u(l) ≥ u(s∗+1), then any club network g∗ with r clubs of size s∗ and one club of size
l is in the farsighted core.

Suppose now that |C| ≥ |N |
s∗ but that u(l) < u(s∗ + 1). Let g ∈ K and given g

define the following club subcollections:

C+g := {c ∈ C : |g(c)| > s∗} ,

C∗g := {c ∈ C : |g(c)| = s∗} ,
and

C−g := {c ∈ C : |g(c)| < s∗}

Given that |C| ≥ |N |
s∗ , C

−
g = ∅ for all g ∈ K.

Let g ∈ K and suppose that C+g = ∅. Consider clubs c1 ∈ C+g and c2 ∈ C−g and
let S1 be a coalition of agents from club c1 of size s∗− |g(c2)|. Observe that if agents
in coalition S1 ⊆ g(c1) switch their memberships to club c2, then the new larger club
c2 will be of optimal size s∗ and all members of coalition S1 will be made better off
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by making the switch. Let g ∈ K be the club network which results from this switch.
Then we have

g S1 g and thus g K g.

Let g ∈ K and suppose that C+g = ∅. If C∗g = r, then there is an agent i in some
club c1 ∈ C−g who can switch his membership to some club c2 ∈ C∗g and be made
better off because u(l) < u(s∗ + 1). Letting g ∈ K be the club network resulting
from this switch we have

g {i} g and thus g K g.

If C∗g < r (maintaining he assumption that C+g = ∅) then sufficiently many agents
from clubs in C−g can switch their memberships to some club c ∈ C−g resulting in a
new, larger club c of optimal size s∗. Moreover, all agents making this membership
switch will be better off. Letting S denote the coalition of agents making the switch
and letting g ∈ K be the resulting club network we have

g S g and thus g K g.

5 Conclusions

An aspect of our work which we find particularly interesting is relationships between
the outcomes of the dynamic process in Arnold and Wooders (2002) and the outcomes
of farsighted strategic behavior. Research in progress addresses these questions.
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